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ABSTRACT 
 

Uncertainty quantification is an emergent field in engineering mechanics that makes use 
of statistical sampling, hypothesis testing and input-output effect analysis to characterize 
the effect that parametric and non-parametric uncertainty has on physical experiment or 
numerical simulation output. This publication overviews a project at Los Alamos National 
Laboratory that aims at developing a methodology for quantifying uncertainty and 
assessing the total predictability of structural dynamics simulations. The propagation of 
parametric variability through numerical simulations is discussed. Uncertainty assessment is 
also a critical component of model validation, where the total error between physical 
observation and model prediction must be characterized. The purpose of model validation 
is to assess the extent to which a model is an appropriate representation of reality, given 
the purpose intended for the numerical simulation and its domain of applicability. The 
discussion is illustrated with component-level and system-level validation experiments that 
feature the response of nonlinear models to impulse excitation sources. This publication is 
unclassified; it has been approved for unlimited, public release (number LA-UR-01-
3828). 
 
 
1. INTRODUCTION 
 

The availability of Tera-Ops computing where speeds of 10+12 multiplications per 
second are exceeded; general purpose finite element modeling and analysis packages; and 
advances in computer graphics promote the development of ever-increasingly complex 
computer simulations [1]. In the field of structural dynamics, applications such as structural 
health monitoring and damage assessment are evolving into system-level analysis 
techniques (as opposed to component-level). For example, the vibration response of an 
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entire bridge is simulated without relying on model condensation techniques that 
approximate the geometry or reduce the number of degrees of freedom [2]. Similarly, 
numerical simulations for health monitoring are increasingly modeling the sources of non-
linearity that may contribute to the system’s response. An example is the transient 
response of suspension and cable-stayed bridges that induces complex energy dissipation 
phenomena [3]. 
 

This evolution, however, leads to new problems. First, conventional features such as 
resonant frequencies and mode shapes become obsolete when the response of the system 
exhibits nonlinear and non-stationary components. New strategies must be devised for 
test-analysis correlation, finite element model updating and parameter calibration. 
Uncertainty quantification and propagation of variability are additional difficulties that the 
conventional forward and inverse problem solving technologies do generally not address. 
Consequently, most approaches available for structural health monitoring are restricted to 
systems where non-linearity and time dependency are “small and regular” enough that 
first-order, linear approximations remain acceptable [4]. The frequency-domain 
formulation and modal transform of the equations of motion are typical examples of first-
order approximation. 
 
1.1 Structural Health Monitoring Research at Los Alamos 
 

To address these difficulties, several research and development efforts have been 
initiated at Los Alamos National Laboratory (LANL). The four aspects that contribute to 
the technology being developed can be categorized as: 
 

(A) Sensing Capabilities;      (B) Data Interrogation; 
 

(C) Uncertainty Quantification;   (D) Structural Prognosis. 
 

The first aspect (instrumentation) focuses on the development of wireless, decentralized 
sensors that also feature localized computing capabilities. This goal is achievable given the 
recent advances in the semi-conductor and MEMS technology. By deploying an array of 
small, non-intrusive and inexpensive sensors and by letting them process the data locally, 
the amount of communication required between the various sensing stations is reduced 
and decision making is greatly facilitated. 
 

The second aspect investigated (data interrogation) involves the reduction of the vast 
amounts of data collected and generated by continuous monitoring and numerical 
simulation. Data condensation and feature extraction tools are developed in the general 
context of statistical pattern recognition. A particular emphasis is placed on developing 
features that enable the analysis of nonlinear and non-stationary responses. Another 
critical issue is data normalization, which consists in ensuring that vibration changes 
observed from one data set to another result from changes in the structural condition of 
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the system as opposed to changes in loading, response levels and environmental condition 
[5]. 
 

The third aspect is the quantification of uncertainty and the validation of numerical 
models for complex engineering simulations. Statistical methods for the design of physical 
or computer experiments are investigated to identify which input parameters are 
responsible for the response’s variability and to study the interaction between inputs and 
outputs. Once this is understood, surrogate models can be developed for efficient 
numerical optimization, damage detection and prognosis. The tools developed for 
uncertainty assessment can be applied to test data sets and numerical models that feature 
arbitrary material non-linearity, contact mechanics and transient excitation sources [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Flow-chart of Integrated Structural Health Monitoring. 
(Black, dashed-dotted: Planning and data acquisition. Red, solid: Large-scale 
modeling and computing. Green, dashed: On-board integration.) 
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The last step (structural prognosis) refers to the assessment of system performance 
given its current structural condition and past history. A critical issue in structural prognosis 
is the identification of future operating conditions and loading. Uncertainty quantification 
and plays, again, a central role because uncertain future loads must be estimated and 
propagated through the surrogate models within a given degree of confidence. Structural 
prognosis also includes decision-making to help the analysts and users balance 
performance and risk assessment. 
 

Figure 1 illustrates the methodology for structural health monitoring developed at Los 
Alamos. It can be observed that the four aspects (A-D) contribute to many of the steps 
outlined in Figure 1. Although it is our opinion that the successful deployment of damage 
detection technology at the system level will require all four aspects to be addressed, this 
publication focuses on the uncertainty assessment (C) only. In the remainder, the forward 
propagation of uncertainty is discussed and illustrated with the numerical simulation of 
Taylor material testing. Then, an example of system-level uncertainty assessment is 
provided with the numerical simulation of an impulse through a complicated threaded 
assembly. This example illustrates the analysis of input-output relationship in the case of a 
large-scale finite element simulation. Finally, the publication is concluded with a discussion 
of total uncertainty assessment. 
 
 
2. FORWARD PROPAGATION OF UNCERTAINTY 
 

The goal of uncertainty quantification is to characterize the effect that parametric 
variability and non-parametric uncertainty have on physical experiment or numerical 
simulation output. It is emphasized that “uncertainty” is not necessarily restricted to 
parametric uncertainty, that is, the imperfect knowledge of the control parameters of a 
physical experiment or input parameters of a numerical model. Uncertainty may also take 
the form of stochastic equations of motion, environmental variability, measurement errors, 
discretization and numerical errors, to name only a few. 
 

Statistical sciences provide many tools for the efficient sampling of probability 
information, hypothesis testing and investigation of the interaction between inputs and 
outputs. An example of international forum where the latest advances in these techniques 
are discussed is the SAMO (Sensitivity Analysis of Model Output) conference [7]. 
Unfortunately, application to engineering mechanics problems remains, to this date, 
somewhat limited. 
 

In the following, uncertainty in a quantity is described in terms of a Probability Density 
Function (PDF) that specifies the probability of all possible values of that quantify. In this 
context, probability is used as the quantitative measure of the degree of belief, which 
summarizes the knowledge about a particular situation. Other mathematical frameworks 
are available for quantifying and propagating uncertainty that may offer attractive 
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alternatives to the theory of probability, especially in the event of extreme uncertainty. 
Among them, we cite the Dempster-Shafer theory of possibility and belief [8], the theory 
of fuzzy sets [9], information gap theory and convex models of uncertainty [10]. For 
engineering applications, representing the uncertainty as probability information is 
reasonable because large amounts of test data and well-established formal theories are 
available. 
 

The oldest and simplest method of uncertainty propagation is the Monte Carlo 
technique. The underlying idea is to randomly pick values of a parameter such that the 
histogram of chosen values approximates the PDF. Then, the computational model is 
analyzed at each point sampled in the input parameter space. Similarly, in the case of 
testing, a physical experiment is performed for each combination of sampled input 
parameters. For each analysis or test performed, the output feature is recorded. Finally, 
the distribution of output values is characterized with its histogram, that is, the frequency of 
occurrence of each value. If a large number of analyses are performed, the Central Limit 
Theorem establishes that the histogram of output values converges to the unknown but 
“true” distribution, hence, offering a complete characterization of the output variability. The 
main drawback of Monte Carlo sampling is that a large number of analyses is required, 
generally several thousand. It is therefore not practical if the analysis performed 
(experiment or simulation) is expensive or the input parameter space to explore is large. 
Other strategies are available that may achieve the same result with a smaller number of 
samples. Among them, we cite the Latin Hypercube sampling [11]; Taguchi sampling and 
other orthogonal array techniques [12]; and the Fourier Amplitude Sensitivity Test 
(FAST), based on a cyclic sampling strategy [13]. 
 
2.1 Example: The Taylor Impact Test 
 

The Taylor impact test consists of impacting a cylindrical sample of material against a 
fixed, rigid surface. Taylor tests are often performed to investigate material behavior at 
high stress and high strain rates. Extremely high plastic strains develop at the crushed end 
of the rod, resulting in severe local deformation. The type of experimental measurements 
typically performed range from simply measuring the initial and final radii or lengths of the 
deformed cylinder, to a full specification of its profile. To illustrate the propagation of 
uncertainty using Monte Carlo sampling, a numerical simulation of the Taylor test is 
performed. The cylinder is made of a high-strength steel, 15 mm in diameter and 38-mm 
long. The impact velocity is 350 meters-per-second. Because large plastic deformations 
and strain rates in excess of 10+5 second-1 are expected, strain-rate dependent plasticity 
must be included in the model. The Johnson-Cook model for rate-dependent plasticity is 
adopted: 
 

( ) ( )( )p3
N
p21 eloga1eaas &++=                                       (1) 
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where ε p and σ  denote the equivalent plastic strain and resulting stress, respectively. The 
parameters α 1, α 2, α 3 and N are material specific. The analysis of the cylinder’s impact is 
performed with HKS/Abaqus, a general-purpose finite-element modeling and analysis 
package, which employs explicit time integration [14]. Figure 2 illustrates the response 
obtained when the four material parameters α 1, α 2, α 3 and N are set to their nominal 
values. 
 

 
 

FIGURE 2. Simulation of the Taylor Test of a High-strength Steel. 
(The response of an axisymmetric model is shown at times of 0 µs, 17 µs, 33 µs and 
50 µs after impact, from left to right. The peak plastic strains for the three 
deformed shapes are equal to 83%, 165% and 248%, respectively.) 
 

The Monte Carlo technique is used to illustrate the forward propagation of uncertainty 
through the simulation code. We consider a hypothetical situation in which the only 
parameters that are uncertain are those in the above stress-strain model (1). It is further 
assumed that the uncertainty distribution in each parameter pj is independent and given by 
a normal distribution, pj ~ N(µj;s j). As indicated above, the Monte Carlo process 
consists of sampling parameter values from the assumed uncertainty distributions and 
running the simulation code for each set of values. This procedure for uncertainty 
propagation can therefore be viewed as nothing more than multiple runs of a deterministic 
computer program. 
 

In this illustration, a total of 1,000 simulation runs are performed. Figure 3 shows the 
histograms of input parameters, that is, the frequency with which each value is sampled. It 
therefore represents the total variability inputted to the system. The two output features of 
interest are the ratios of final-to-initial cylinder lengths and radii, denoted by (L/Lo) and 
(R/Ro), respectively. Figure 4 illustrates the joint distribution of output features that results 
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from input uncertainty. One noticeable observation is that the response parameters (L/Lo) 
and (R/Ro) are strongly correlated, as indicated by the non-circular distribution of points 
in the output feature space. 
 

 
 

FIGURE 3. Histograms of Sampled Input Parameter Values. 
(Upper left: Parameter α 1. Upper right: Parameter α 2. Lower left: Parameter N. 
Lower right: Parameter α 3. Symbols α 1, α 2, N and α 3 refer to equation (1).) 
 

 
 

FIGURE 4. Distribution of Output Features (L/Lo) and (R/Ro). 
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(Horizontal axis: Ratios of final-to-initial lengths, (L/Lo). Vertical axis: Ratios of 
final-to-initial radii at the crushed end of the cylinder, (R/Ro).) 
 

Figure 5 shows the histograms of the ratios (L/Lo) and (R/Ro) obtained from the 
above joint distribution. In the case of the output feature (R/Ro), for example, the mean 
value of this distribution is equal to 2.06. Because the distribution represents the output 
uncertainty in (R/Ro), the RMS deviation of the distribution, s  = 0.14, represents the 
estimate of the standard deviation in the uncertainty of our prediction for (R/Ro). It can 
further be observed that the two histograms shown in Figure 5 do not appear to be 
normally distributed, which should come as no surprise because the numerical simulation 
of this phenomenon is highly nonlinear. 
 

 
 

FIGURE 5. Histograms of Output Features (L/Lo) and (R/Ro). 
(Top: Distribution of ratios of final-to-initial lengths, (L/Lo). Bottom: Distribution of 
ratios of final-to-initial radii at the crushed end of the cylinder, (R/Ro).) 
 

For this example, the Monte Carlo calculation is handled using a scripting language that 
allows one to run a simulation code (such as HKS/Abaqus) with controlled input 
parameters and to summarize the output. The scripting language used here is Python [15]. 
Another possibility would be to use a commercial code such as NESSUS, which has been 
developed for reliability analysis of structural mechanics applications [16]. Other general-
purpose applications are being developed for the propagation of uncertainty, 
characterization of output probability information and inference concerning the parameter 
values. One example is the DAKOTA toolkit under development at Sandia National 
Laboratories [17]. 
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3. INPUT-OUTPUT EFFECT ANALYSIS 
 

One important application of uncertainty propagation is the analysis of input-output 
effects. Learning which combinations of input parameters are responsible for explaining 
the variability of the output is critical to understand complex physical experiments or 
numerical simulations. Effect analysis goes beyond conventional sensitivity analysis (based 
on differential sensitivity or approximation methods such as finite differences) because it 
assesses the sensitivity of the output over the entire range of applicability of the model. In 
contrast, local approaches only provide information in the neighborhood of a particular 
design point and a particular direction. Mathematically, effect analysis addresses the 
difficult problem of differentiating a function with respect to a random variable. 
 

To illustrate the concept of effect analysis, consider that the phenomenon investigated 
(experiment or simulation) is replaced with a surrogate model: 
 

∑ ∑∑
= ≥==

++=
N1i ijN,1j

jiij
N1i

iio ppßpaay
L LL

                                   (2) 

 
Clearly, if all input parameters pj are normalized in [-1;+1], then the relative magnitude 
between coefficients a j or ßij is indicative of the importance of the corresponding effect, 
whether it is a linear effect (pj), a linear interaction (pipj) or a quadratic effect (pj

2). 
Statistical tests can be implemented to assess the global contribution of each effect to the 
total variability. Assume that the output variability can be explained by a particular input 
parameter or interaction effect denoted by pM. The expected value of the output given pM 
is denoted by y = E[y|pM]. It can be shown that the total variance observed from the data 
is equal to the variance of y and the expected value of the total variance given pM: 
 

s 2(y) = s 2 (y) + E[s 2(y | pM)]                                         (3) 
 
Obviously, the last term in the right-hand side of equation (3) represents the influence of 
parameter effect pM on the total variability of the output y. If this effect has little influence, 
then, the contribution E[s 2(y|pM)] remains small. A popular statistic that approximates 
E[s 2(y|pM)] is the R-square statistic (R2). It is defined as the ratio of variance that can be 
attributed to a given effect to total variance: 
 

( ) ( ) ( )∑ ∑∑∑
= ===

−−−=−
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              (4) 

 
The procedure for input-output effect analysis consists of, first, designing a matrix of 

physical or computer experiments. The matrix provides the combination of input 
parameters pj at which the physical experiments or computer simulations are performed. 
The previous section 2 provides an example of uncertainty propagation in which the 
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design matrix is defined by a Monte Carlo simulation. More efficient designs can be 
obtained with fewer runs when the objective is input-output effect analysis. Reference [12] 
describes, among others, the design of Taguchi orthogonal arrays and reference [18] 
addresses the design of experiments in conjunction with surrogate modeling. After the 
physical experiments or numerical simulations have been performed at the specified design 
points, the R2 statistics can be calculated from equation (4) for various linear or higher-
order effects. Effects associated with large R2 statistics explain the output variability more 
than the others and they must be accounted for to best-fit surrogate models such as 
equation (2). In the following, an example of effect analysis is presented that illustrates the 
characterization of a transient structural response using a Taguchi array design. 
 
3.1 Example: Large Scale Modeling of a Shock Response 
 

Traditionally, quantifying shock transmission through complex, jointed structures has 
been possible only with experimental methods. These experiments are expensive and 
time-consuming and thus only a few cases can be studied. With the advent of large scale 
computing capabilities, estimation of the shock transmission with numerical models is 
becoming a tractable problem. 
 

The test article consists of several components fabricated from a variety of materials 
(titanium, 6061-T6 aluminum, 7075-T4 aluminum, SS-304 stainless steel and carbon 
steel). Figure 6 illustrates the individual components of the test article and a detail of the 
finite element mesh developed for simulating the response of the system to an explosive 
load. The components are connected to the center titanium mount with threaded, bolted 
and tapered tape joints. The purpose of the numerical simulation is to predict the 
acceleration levels witnessed by the upper and lower mass simulators. A series of physical 
experiments are also performed to measure the actual response of the system and assess 
the predictive accuracy of the numerical model. Making this prediction assumes that the 
transmission of the shock wave through the threaded assembly shown in Figure 6 is 
captured with accuracy. What makes it difficult, however, is that the energy dissipation 
characteristics of material interfaces are not known precisely. 
 

In the numerical simulation, this uncertainty is represented by twelve random preload 
and friction coefficients. It is further assumed that four of the random input parameters 
take two values while the other eight take three values. Therefore, the total number of 
computer runs required to characterize fully the input space is 24 x 38 = 104,976. 
Performing a full factorial analysis is currently impossible because a single evaluation of the 
model requires four to six hours of CPU time using 504 processors of the Los Alamos 3 
Tera-Ops supercomputer. To limit the required simulation time, a subset of 48 runs is 
completed from parameter samples selected using the Taguchi orthogonal array technique. 
This particular design is adopted to eliminate aliasing, which refer to the confounding of 
linear effects (such as a i) with second order or higher effects (such as ßij). Because the 
transmission of shock across the mount to the payload components is the primary event of 
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interest, statistical moments of the time history, shock response spectrum and power 
spectral density at six locations are used as features. Hence, a total of 36 features (2 
moments x 3 outputs x 6 locations) are extracted for each one of the 48 runs. For each 
feature, a linear statistical model is constructed by ignoring higher-order effects ßij in 
equation (2). A summary of the R2 analysis is presented in Figure 7. 



Proceedings of the 3 rd International Workshop on Structural Health Monitoring 
September 17-19, 2001, Stanford University, Stanford, California 

 

 
Approved for Unlimited, Public Release on July 15, 2001. LA-UR-01-3828. Unclassified. 

12

 
 

FIGURE 6. Components of the System and Detail of the Computational Mesh. 
(Left: Lower shell, titanium mount, upper mass simulator, retaining nut and lower 
shell. Right: Detail of the computational mesh showing the threaded interface 
between the upper and lower shells, retaining nut and titanium mount.) 
 

 
 

FIGURE 7. Input Parameters Most Responsible For the Output Variability. 
(Composite R2 statistics for 36 features. The computer experiment is designed for 
the screening of linear effects using an orthogonal Taguchi array with 48 runs.) 

 



Proceedings of the 3 rd International Workshop on Structural Health Monitoring 
September 17-19, 2001, Stanford University, Stanford, California 

 

 
Approved for Unlimited, Public Release on July 15, 2001. LA-UR-01-3828. Unclassified. 

13

 
Figure 7 illustrates that the 36 features investigated exhibit global sensitivity to the five 

parameters p1, p8, p10, p11 and p12. It demonstrates the significant reduction in 
dimensionality that can be achieved through parameter effect analysis. This model 
validation experiment is further discussed in references [6] and [19]. 
 
 
4. TOWARDS THE ASSESSMENT OF TOTAL UNCERTAINTY 
 

This publication overviews the issues of uncertainty assessment for structural dynamics 
simulations and applications such as structural health monitoring. The propagation of 
parametric variability through numerical simulations is discussed. Parameter effect analysis 
is introduced as a practical method for identifying surrogate models and providing to the 
analysts valuable insight regarding the input-output relationship in the case of complex 
numerical models. 
 

The inverse propagation of uncertainty is not illustrated here but numerous examples of 
parameter calibration, finite element model updating and other inference problems can be 
found in the literature. Inverse propagation of uncertainty refers to the inference of 
probability information for the control parameters of a physical experiment or input 
parameters of a numerical simulation, given observed uncertainty in the output. Among the 
possible frameworks, Bayesian inference is a choice commonly encountered in many 
disciplines of physics and engineering sciences. An example of Bayesian inference in the 
presence of uncertainty is provided in reference [20] that reports on the inference of a 
model of criticality in a nuclear physics experiment. 
 

Uncertainty assessment is also a critical component of model validation. Model 
validation is formally defined as the substantiation that a model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended 
applications of the model. A pre-requisite to model validation is therefore that the total 
error between physical observation and model prediction be characterized. The approach 
generally agreed upon consists of breaking down the total error into individual 
components and estimating the probability information of each one. Equation (5) illustrates 
a total uncertainty model commonly adopted: 
 

= +
=

Measured Predicted

Predicted 1 2 N

Total

y y e
y M(p ; p ; ;p )

e~N(0;s )
L                                     (5) 

 
The total error is defined as the difference between measured and predicted responses. 
The numerical model M is a black box that provides an output y given N input 
parameters labeled p1 through pN. In addition, a probabilistic error model must be chosen. 
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It consists in equation (5) of an unbiased Gaussian probability density function with 
unknown standard deviation s Total. 
 

Characterizing the predictability of the numerical model can be achieved by 
decomposing the total error into independent contributions. For example, if the error is 
thought to be a Gaussian process that includes measurement error, parametric variability 
and discretization error, then the total variance can be decomposed into: 
 

=

+ +∑2 2 2 2 2
Total M j D R

j 1 N

s = s + s s s
L

                                      (6) 

 
where s M denotes the standard deviation of measurement error, s j denotes the standard 
deviation of parametric variability for the jth parameter pj and s D represents the 
discretization error. It may happen that the sources of uncertainty are not independent 
from each other, in which case the right-hand side in equation (6) becomes an upper 
bound. Variance decomposition is further complicated in the case of multivariate statistics 
because each variance term s 2 in equation (6) then becomes a covariance matrix [S]. This 
happens when several, possibly correlated, output features {y1;y2;…;yN} are considered 
simultaneously. 
 

In a typical model validation experiment, the total variance s Total is obtained from a 
comparison of measured and predicted responses for a design of experiments that 
attempts to explore the input space as much as possible. Components such as s M and s D 
are estimated by investigating the measurement system and mesh convergence properties, 
respectively. The variability s j of the output due to input uncertainty of the jth parameter is 
typically identified through an input-output effect analysis such as previously illustrated in 
section 3. In equation (6), the only term that remains unknown, s R, represents the residual 
sources of uncertainty. They include model form error. Obtaining an estimation of model 
form error is critical to assess the validity of the numerical model over its domain of 
applicability. Once available, the probability information N(0;s R) can be propagated to 
future predictions to assess confidence bounds associated with a prediction of the model. 
This may be the ultimate goal of total uncertainty assessment and model validation. 
Reference [21] develops a Bayesian framework for a similar propagation of uncertainty 
and reference [22] discusses an application of this methodology to the problem of radar 
range tracking in multiple and diffuse target situations. 
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